Evaluation of P. vivax isolates in Thailand using polymorphic markers Plasmodium merozoite surface protein (PvMSP) 1 & PvMSP3

01 Dec 2018
Suphakhonchuwong N, Chaijaroenkul W, Rungsihirunrat K, Na-Bangchang K, Kuesap J

 

Malaria is a significant public health problem in several tropical countries including Thailand. The prevalence of Plasmodium vivax infection has been increasing in the past decades. Plasmodium vivax merozoite surface protein (PvMSP) gene encodes a malaria vaccine candidate antigen. Its polymorphic nature leads to antigenic variation, the barrier for vaccine development, drug resistance, and potential for multiple-clone infections within the malaria patients. The objective of this study was to investigate the genetic diversity of PvMSP1 and PvMSP3 gene in P. vivax populations in Thailand. A total of 100 P. vivax isolates collected from the western (Kanchanaburi and Tak Provinces) and southern (Ranong Provinces) regions along the Thai-Myanmar border were analyzed using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Analysis of the F1, F2, and F3 regions of PvMSP1 revealed 5, 2, and 3 allelic variants, respectively. Three major types of PvMSP3-α and two major types of PvMSP3-β were identified based on the PCR product sizes. After digestion with restriction enzymes, 29, 25, 26, and 18 patterns were distinguished by RFLP for PvMSP1 (F2, Alu I), PvMSP1 (F2, Mnl I), PvMSP3-α, and PvMSP3-β, respectively. Combination of each family variant (PvMSP1 and PvMSP3) resulted in high genetic polymorphism of P. vivax population. Additionally, using PvMSP1 polymorphic marker revealed a significant association between multiple-genotype infections and P. vivax parasitemia. The results strongly supported that P. vivax populations in the endemic areas along the Thai-Myanmar border are highly diverse.